Multiple signaling pathways in gene expression during sugar starvation. Pharmacological analysis of din gene expression in suspension-cultured cells of Arabidopsis.
نویسندگان
چکیده
We have identified many dark-inducible (din) genes that are expressed in Arabidopsis leaves kept in the dark. In the present study we addressed the question of how plant cells sense the depletion of sugars, and how sugar starvation triggers din gene expression in suspension-cultured cells of Arabidopsis. Depletion of sucrose in the medium triggered marked accumulation of din transcripts. Suppression of din gene expression by 2-deoxy-Glc, and a non-suppressive effect exerted by 3-O-methyl-Glc, suggested that sugar-repressible expression of din genes is mediated through the phosphorylation of hexose by hexokinase, as exemplified in the repression of photosynthetic genes by sugars. We have further shown that the signaling triggered by sugar starvation involves protein phosphorylation and dephosphorylation events, and have provided the first evidence that multiple pathways of protein dephosphorylation exist in sugar starvation-induced gene expression. An inhibitor of serine/threonine protein kinase, K-252a, inhibited din gene expression in sugar-depleted cells. Okadaic acid, which may preferentially inhibit type 2A protein phosphatases over type 1, enhanced the transcript levels of all din genes, except din6 and din10, under sugar starvation. Conversely, a more potent inhibitor of type 1 and 2A protein phosphatases, calyculin A, increased transcripts from din2 and din9, but decreased those from other din genes, in sugar-depleted cells. On the other hand, calyculin A, but not okadaic acid, completely inhibited the gene expression of chlorophyll a/b-binding protein under sugar starvation. These results indicate that multiple signaling pathways, mediated by different types of protein phosphatases, regulate gene expression during sugar starvation.
منابع مشابه
Identification and Expression Analysis of Two Arabidopsis LRR-Protein Encoding Genes Responsive to Some Abiotic Stresses
AbstractTwo Arabidopsis thaliana genes, psr9.2 and psr9.4 appearedto be highly similar to a phosphate-starved induced gene,psr9, isolated from Brassica nigra suspension cells.Sequence analysis classified the encoded polypeptides asmembers of leucine-rich repeat (LRR) proteins superfamily.The sequence of psr9 proteins comprise a unique N-terminalregion e...
متن کاملGene Expression Profile Analysis during Mouse Tooth Development
Introduction: Complex molecular pathways involve in development of different tissues such as teeth. Differential gene expression patterns during teeth development generates different tooth types. Teeth development results from interactions between oral epithelium and underlying ectomesenchyme cells with neural crest origin. Teeth development are regulated by different signaling networks. In thi...
متن کاملIsolation of Brassica napus MYC2 gene and analysis of its expression in response to water deficit stress
Manipulation of stress related transcription factors to improve plant stress tolerance is a major goal of current biotechnology researches. MYC2 gene encodes a key stress-related transcription factor involved in Jasmonate (JA) and abscisic acid (ABA) signaling pathways in Arabidopsis. Brassica napus, as a globally important oilseed crop, is a close relative of Arabidopsis. In the present study...
متن کاملEffects of fibromodulin protein expression on NFkB and TGFβ signaling pathways in liver cancer cells
Introduction: The incidence rate of liver cancer is continuously increasing. Currently, gene therapy is applied to improve various medical issues such as cancer treatment approaches. Correspondingly, fibromodulin involves in many biological and physiological processes through interaction with growth factors and signaling pathway receptors. The aim of this study was to investigate the effects of...
متن کاملFungal Infection Alters Phosphate Level and Phosphatase Profiles in Arabidopsis
Phosphorus (P), in the form of phosphate ion (Pi), is a vital element contributing in biomolecule structures, metabolic reactions, signaling pathways and energy transfer within the living cells. The objective of the present study was to assess the influence of fungal infection on Pi metabolism in compare to the effects of phosphate stress in Arabidopsis. Quantification of total P contents showe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 124 3 شماره
صفحات -
تاریخ انتشار 2000